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ABSTRACT
Generating fluent and informative natural responses while main-
taining representative internal states for search optimization is
critical for conversational search systems. Existing approaches ei-
ther 1) predict structured dialog acts first and then generate natural
response; or 2) map conversation context to natural responses di-
rectly in an end-to-end manner. Both kinds of approaches have
shortcomings. The former suffers from error accumulation while
the semantic associations between structured acts and natural re-
sponses are confined in single direction. The latter emphasizes
generating natural responses but fails to predict structured acts.
Therefore, we propose a neural co-generation model that gener-
ates the two concurrently. The key lies in a shared latent space
shaped by two informed priors. Specifically, we design structured
dialog acts and natural response auto-encoding as two auxiliary
tasks in an interconnected network architecture. It allows for the
concurrent generation and bidirectional semantic associations. The
shared latent space also enables asynchronous reinforcement learn-
ing for further joint optimization. Experiments show that our model
achieves significant performance improvements.
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I would like to find an architectural attraction to
go to in the center. Can you help me?

Conversational Search Example

Yes! I have found 5 attractions matching your
requirements. Would you like to know more?

I would like to get the entrance fee and address of
them please.

User System

Great Saint Mary’s Church is 2
pounds and the other 4 are free.
Would you like the address for
Great Saint Mary’s Church?

Dialog Acts:
Attraction-Inform-Name
Attraction-Inform-Fee
Attraction-Inform-Choice

Co-generate

Structured Natural Language

Belief States:
Attraction-Type-architecture
Attraction-Area-CenterExternal DB

Name Type Area Fee …
castle galleries museum center free …
christ's college college center free …
… … … … …

Figure 1: An example of conversational search where both
the structured dialog acts and natural responses are crucial.

1 INTRODUCTION
With the rise of various personal assistants, conversational search
has received a surge in popularity and attention [1, 10, 23, 28, 32].
Such systems aim to facilitate people with services such as hotel
or restaurant booking through natural language conversations [5,
6, 17]. Different from the open-domain dialogues, its ultimate goal
is to provide satisfactory natural responses to the end users and
generate structured representations such as dialog acts for internal
search optimization. For instance, Figure 1 shows a conversation
segment, from which we can notice that both the structured dialog
acts and natural language responses are essential for building an
effective and efficient conversational search system [36, 45].

Traditionally, conversational response generation is conducted
as a pipeline with multiple modules one after another. A standard
architecture for such methods generally decompose the task into
several subtasks, namely natural language understanding, state
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https://doi.org/10.1145/3477495.3532063
https://doi.org/10.1145/3477495.3532063


SIGIR ’22, July 11–15, 2022, Madrid, Spain Chenchen Ye, Lizi Liao, Fuli Feng, Wei Ji, and Tat-Seng Chua

tracking, policy learning and natural response generation. Basi-
cally, natural language responses are generated based on formerly
predicted dialog acts [15, 27, 41, 51]. However, such methods suffer
from the error accumulation problem. For instance, errors occurred
in dialog act prediction will mislead the following natural response
generation. Also, such sequential modeling forces the semantic
associations between structured dialog acts and natural responses
to flow in only one direction. The heuristic or clue gained from the
latter is unable to benefit dialog act prediction as a former stage.

Another group of research efforts directly learn the mapping
between conversation context to natural language response in an
end-to-end manner [26, 38, 52]. For example, Li et al. [21] leveraged
an encoder-decoder RNN to define a policy over an infinite action
space consisting of all possible utterances and optimize it via rein-
forcement learning (RL) with dialogue simulations [19, 34]. Zhao
et al. [52] narrowed down the action spaces as latent variables and
Wang et al. [38] further modeled the hierarchical structure with the
option framework [35]. Such end-to-end methods explicitly ignore
the structured dialog acts while resort to latent vectors at ease.
Although such manner makes the context-to-response modeling
more focused, the latent vectors learned are hard to use or interpret.
They fail to generate structured responses such as dialog acts for
search optimization, e.g. query execution or error debugging.

To overcome these, we aim to co-generate structured dialog acts
and natural language responses at the same time. A viable way is to
treat dialog act prediction as another sequence generation task and
combine it with the original natural response generation as two de-
coder branches in multitask learning.Wang et al. [39] followed such
structure and further designed dynamic attention to guide response
generation with attended dialog acts. However, the interrelation-
ships among dialog acts and natural responses are only modeled
locally. The required synchronization between the two decoder
branches is hard to realize due to varied vocabularies and sequence
lengths. Moreover, the generators only focus on the responses in
the current turn while fail to foresee the future in conversational
search, hence might result in short-sighted responses.

In this work, we thus propose a neural Co-Generationmodel (Co-
Gen) to realize global bidirectional semantic associations between
the two forms of responses and reduce errors via farsighted opti-
mization. Generally speaking, we construct a shared latent space
for various forms of response generation and shape it with two
informed priors. Specifically, we treat auto-encoding of structured
dialog act and natural response as two separate auxiliary tasks. It
inherently captures the generative factors of these responses while
the semantic associations between them are globally matched via
KL divergence. This allows for concurrent generation of the two
forms of responses but does not require synchronization opera-
tions as the regularization works in a global way. Moreover, with
the shared latent space, we manage to conduct asynchronous rein-
forcement learning smoothly to foresee the future for better search
completion and success rates.

The contributions of this work can be summarized as follows:
• We design an interconnected network to co-generate struc-
tured and natural responses that allows for bidirectional
semantic associations. Being regularized by auto-encoding
priors, the network learns meaningful semantic space.

• We optimize the shared latent space of the variational model
using asynchronous reinforcement learning. The task com-
pletion rewards promote more intelligent responses.

• Experiments show that the proposed Co-Gen significantly
outperforms several state-of-the-art models both on auto-
matic evaluation metrics and human evaluation, leading the
board on the total performance in official records 1.

2 RELATEDWORK
Researchers have continuously worked on many crucial problems
of conversational search. Dalton et al. [7, 8] created benchmarks
that track important information in dialogue context and then per-
form retrieval and ranking processes over candidate responses.
Many methods explored this task setting, e.g., to rank related in-
formation for current conversational answer by reasoning over a
word proximity network [16], or to construct modular components
for conversational ranking, including utterance rewriting, related
candidate passage retrieval and re-ranking [28]. In this work, we
instead focus on the generation angle. In general, structured dia-
log acts prediction and natural language response generation are
closely related in the research of dialogue systems. Hence, our work
relates to both the traditional pipe-lined methods and the popular
end-to-end based methods. We use the term “end-to-end” through-
out this paper to emphasize methods that do not require any middle
labels or generate any intermediate results such as dialog acts.

2.1 Pipe-lined Response Generation
Pipe-lined systems typically require several separated modules:
natural language understanding to extract user’s intents (e.g. in-
form) and slot values (e.g. area-center), state tracking to update
belief states [22, 24, 49], policy module to decide the system’s next
action [50], and natural language generation (NLG) to generate
natural language responses. Such separated modules are trained
independently with different supervision. More importantly, the
policy module is conducted first and then used for the later response
generation [25, 41, 51] to solve problems more efficiently [20, 21]. A
classic solution employs reinforcement learning (RL) to learn a dia-
log policy that models the optimal action distribution conditioned
on the dialogue state [42]. For traditional modular systems, the ac-
tion space is defined by hand-crafted semantic representations such
as dialog acts [4]. However, it requires that the entire action space
can be hand-crafted [33], which cripples a system’s ability to han-
dle complex conversations. More importantly, the errors occurred
in the policy module will inevitably be accumulated to the later
response generation module, which might be misled by the noisy or
wrong inputs. Also, such pipe-lined generation manner forces the
semantic associations between dialog acts and natural responses to
transmit in only one direction, that is from dialog acts to natural
response. Models will not be able to leverage knowledge learned
from natural response generation to guide the corresponding dialog
act prediction.

Another line of research efforts rely on language modeling to
generate middle results sequentially and are rather close to pipeline-
lined methods. These models largely benefit from the large pre-
trained transformer-based models such as BERT [11] and GPT-2
1https://github.com/budzianowski/multiwoz

https://github.com/budzianowski/multiwoz
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[31]. By connecting dialogue context, intermediate results and re-
sponse into a long sequence, such systems typically rely on lan-
guage modeling techniques to directly optimize the data likelihood
while neglecting the strategy planning altogether [15, 30, 44].

2.2 End-to-end Response Generation
Research in end-to-end response generation is largely inspired by
the success of sequence-to-sequencemodeling for chit-chat systems.
Under this line, various kinds of sequence-to-sequence models have
played their important parts in the response generation task, from
basic neural recurrent models such as RNN, Bi-LSTM, hierarchical
recurrent encoder-decoder to advanced ones such as DialoGPT [48]
and prompt-learning [13]. We see great success in applying these
models for open domain conversations or chit-chat, however, it is a
non-trivial task to transfer such success to goal-oriented application
scenarios such as conversational search.

In the closely connected task-oriented dialogue research commu-
nity, researchers have managed to combine sequence-to-sequence
models with reinforcement learning using task completion rewards
[46, 47]. Initially, the action space for RL is generally defined as the
entire vocabulary such as in [21] where every response output word
is considered to be an action selection step. It blows up the size of
action space hence the trajectory length, which easily leads to slow
and sub-optimal convergence [9, 14]. Therefore, Zhao et al. [52]
proposed to construct a latent space between the context encoder
and the response decoder as the action space. Better performance
is obtained. Lubis et al. [26] further leveraged auxiliary tasks to
shape the latent variable distribution and Wang et al. [38] modeled
the hierarchical structure between the dialogue policy and NLG
with the option framework [35]. Better response results have been
achieved for these methods partly because they make the learning
of ‘context-to-natural response’ mapping more focused. However,
these methods fail to generate structured dialog acts for search opti-
mization. Their latent variables learned are hard to interpret or use
under a specific search setting. For example, when something went
wrong in the generated natural language responses, it is hard to
check the reason relying on latent vectors, while structured dialog
acts might give us some useful hints on the contrary. Also, struc-
tured dialog acts provide us more convenient information pieces to
optimize the search interaction flow, e.g. forming queries.

We hence resort to generate structured dialog acts and natural
responses at the same time to support these functions. Although
there are few studies tried to work in this direction such as [39],
our work overcomes several limitations such as local semantic
associations between various response forms and short-sighted
generation etc.

3 METHOD
We formally introduce the response co-generation task and our
proposed Co-Gen approach as shown in Figure 2. Formally, let
𝑆𝑡 = {𝑢1, 𝑟1, · · · , 𝑢𝑡−1, 𝑟𝑡−1, 𝑢𝑡 } denotes the conversation history at
turn 𝑡 , where 𝑢𝑖 and 𝑟𝑖 are the 𝑖-th turn user and system utterance
respectively. We represent the conversation context 𝐶𝑡 as the com-
bination of window sized 𝑆𝑡 and the state vector 2. The objective

2Following the popular setting in [3, 38, 39], we consider context window 2 for dialogue
history and use the ground truth state vector because state tracking is not our focus.

of the co-generation task is to generate the dialog acts sequence
𝑎𝑡 = 𝑥1, 𝑥2, · · · , 𝑥𝑚 of𝑚 words and a natural language response
𝑟𝑡 = 𝑦1, 𝑦2, · · · , 𝑦𝑛 of 𝑛 words based on the context.

Generally speaking, the proposed Co-Gen model works as an
encoder-decoder framework under the multitask learning setting as
shown in Figure 2. The dialog act decoder and the natural response
decoder share the latent space 𝒛, which is shaped by calculating
KL-divergence with the informed priors learned via auto-encoding
tasks. Such latent vector 𝒛 also enables the adoption of reinforce-
ment learning for further optimization. For more details, we will
first give some preliminaries about the general end-to-end RL frame-
work for response generation which is closely related to our design.
Then, the shared latent space is introduced with our auto-encoding
schemes. Following the description of the co-generation branches
for different response forms, we further give details about the asyn-
chronous reinforcement learning.

3.1 Preliminaries
Since the optimization framework is closely related to the popular
end-to-end RL framework [52], we first introduce some preliminary
concepts here. In such framework, the response generation is typi-
cally performed in two steps: supervised learning (SL) pretraining
and RL finetuning. In the SL step, the model learns to generate a
response 𝒓 based on the observed conversation context 𝒄 . It updates
the network parameters 𝜋 to maximize the log likelihood of the
whole training data:

𝐿𝑆𝐿 = E𝒓,𝒄 [ log 𝑝𝜋 (𝒓 |𝒄)] . (1)

After achieving a good parameter setting 𝜋 via SL, the RL step
starts from it and further updates the model parameters w.r.t. the
task-specific goal, reflected as a reward. The RL steps usually uses
policy gradients, e.g. the REINFORCE algorithm [43]. Suppose a
dialogue has𝑇 turns, for a specific time-step 𝑡 , the discounted return
is defined as𝑂𝑡 =

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡𝑜𝑖 , where 𝑜𝑡 is the immediate reward for
turn 𝑡 and 𝛾 ∈ [0, 1] is the discount factor. During fine-tuning, the
model tries to maximize the expected return from the first time-step
onward. The mathematical formulation for such expected return is
hence 𝐽 = E[∑𝑇𝑡=0 𝛾𝑡𝑜𝑡 ].
3.1.1 Word-level RL. For the RL step, the initial word-level methods
treat every output word as an action step hence the policy gradient
is calculated as:

∇𝐽 (𝜋) = E𝜋 [
𝑇∑︁
𝑡=0

|𝑟𝑡 |∑︁
𝑗=0

𝑂𝑡 𝑗∇𝜋 log 𝑝𝜋 (𝑤𝑡 𝑗 |𝑤<𝑡 𝑗 , 𝒄𝑡 )],

where 𝑗 is the index of each token 𝑤 in the response 𝑟𝑡 and 𝑂𝑡 𝑗
denotes the discounted return of the 𝑗-th token at turn 𝑡 . In this
policy gradient form, the action space is the vocabulary size of the
system |𝑉 |, and the trajectory length is

∑𝑡=𝑇
𝑡=0 |𝑟𝑡 |, making RL in this

space extremely challenging.

3.1.2 Latent Action Space RL. Hence, researchers in [26, 38, 52]
introduce a latent variable 𝒛 to factorize the conditional distribution
into 𝑝 (𝒓 |𝒄) = 𝑝 (𝒓 |𝒛)𝑝 (𝒛 |𝒄). By treating the latent space 𝒛 as the
action space, correspondingly, the policy gradient becomes:

∇𝐽 (𝜋) = E𝜋 [
𝑇∑︁
𝑡=0

𝑂𝑡∇𝜋 log 𝑝𝜋 (𝒛𝑡 |𝒄𝑡 )] . (2)
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𝑢!

𝒛𝒕

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝒄𝒕

𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

𝑃%(𝒛!|𝒄!)

𝑃&(𝒛!'|𝒂!)

𝑃((𝒛!)|𝒓!)

Dialog Act Decoder

Response Decoder

Dialog Act Encoder

Response Encoder

𝒛!"

𝒛56

< > attraction inform … choice

< > attraction inform … choice

< > would you like … ? < > would you like … ?

Context Encoder

KL

KL

𝜙

𝜓

𝜃
𝑑𝑖𝑎𝑙𝑜𝑔 𝑎𝑐𝑡𝑠 𝒂𝒕

𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝒓𝒕

𝒂𝒕

𝒓𝒕

Figure 2: Architecture of the proposed Co-Gen for dialog act and natural response co-generation, where act and response
generators share the same latent space 𝒛. Two auto-encoding branches (shaded in green/orange) are treated as auxiliary tasks to
regularize the latent space and capture generative factors of responses. The encoder 𝜙 and𝜓 will be disabled during testing.

Note that by introducing such latent variable, the size of action
space and the trajectory length are largely reduced. Also, the policy
gradient only focuses on the encoder part 𝜋𝑒 while the decoder 𝜋𝑑
stays intact.

3.2 Shared Latent Space
In our approach, we also maintain such a latent variable space.
Specifically, we construct a context encoder network with parame-
ters 𝜃 , which corresponds to 𝑝𝜃 (𝒛 |𝒄). We first encode the concate-
nated conversation history 𝑆𝑡 via bidirectional RNN network with
GRU cells and global type attention mechanism:

𝒔𝑡 = Bi-GRU( 𝑆𝑡 ) .

Then, we obtain the context representation 𝒄𝑡 as 𝒄𝑡 = [𝒔𝑡 ; 𝒅𝑡 ]
where 𝒅𝑡 is the oracle state vector following the popular setting in
[3, 38, 39] and [; ] denotes the concatenation operation.

Similar to [26], we assume that the latent variable 𝒛 is sam-
pled from a multivariate Gaussian distribution. Hence, we have
𝑝𝜃 (𝒛 |𝒄) = N(𝒛 |𝝁, 𝚺). It can be implemented via the reparameteri-
zation trick [18] with feed-forward neural networks:

𝝁, 𝚺 = 𝑀𝐿𝑃 (𝒄𝑡 ),
𝜖 ∼ N(𝝁, 𝚺),
𝒛 = 𝑀𝐿𝑃 (𝜖),

where 𝜖 is a context dependent random noise. It is drawn from a nor-
mal distribution whose mean and covariance matrix are computed
from 𝒄𝑡 with feed-forward neural networks.

The latent space is shared with the dialog act encoder and the
natural response encoder as shown in Figure 2. Basically, we have
two auto-encoding streams: 𝒂 → 𝒛𝑎 → 𝒂 and 𝒓 → 𝒛𝑟 → 𝒓 . For
example, in the former stream, we chose dialog acts sequence auto-
encoding as the auxiliary task using the variational auto-encoding
(VAE) model. That is, given a sequence 𝒂 we train the model to re-
construct the sequence via a latent variable 𝒛𝑎 between the encoder
and decoder (green shaded box in Figure 2). With an uninformed

prior 𝑝 (𝒛), the pre-training objective for network parameters𝜓 is:

𝐿𝑉𝐴𝐸 (𝜓 ) = E𝑞𝜓 (𝒛𝑎 |𝒂) [log𝑝𝜓 (𝒂 |𝒛𝑎)] − 𝐷𝐾𝐿 [𝑞𝜓 (𝒛𝑎 |𝒂) | |𝑝 (𝒛𝑎)],

where 𝑞𝜓 (𝒛𝑎 |𝒂) is the posterior. VAE models have been shown to
be able to capture generative aspects of the samples they are trained
on, resulting in good interpolation between latent variables [18].
By training a VAE on dialog acts sequences, we aim to capture
global generative aspects of dialog acts such as intent and domain
information in an unsupervised manner.

Similarly, the pre-training objective for network parameters 𝜙
for the 𝒓 → 𝒛𝑟 → 𝒓 stream (orange shaded box in Figure 2) is:

𝐿𝑉𝐴𝐸 (𝜙) = E𝑞𝜙 (𝒛𝑟 |𝒓 ) [log𝑝𝜙 (𝒓 |𝒛𝑟 )] − 𝐷𝐾𝐿 [𝑞𝜙 (𝒛𝑟 |𝒓) | |𝑝 (𝒛𝑟 )] .
In this stream, we aim to capture global generative aspects of natural
responses in an unsupervised way.

To sum up, we leverage two auto-encoding streams for dialog
acts sequence and natural response respectively and learn two VAE
latent spaces 𝒛𝑎 and 𝒛𝑟 in an unsupervised manner. We propose to
utilize the VAE latent spaces 𝒛𝑎 and 𝒛𝑟 to regularize the latent space
𝒛 learned from conversation context, making a shared latent space.
Hence, we will use the learned posteriors 𝑞𝜓 (𝒛𝑎 |𝒂) and 𝑞𝜙 (𝒛𝑟 |𝒓)
as informed priors for co-generation.

3.3 Co-generation Branches
With shared latent space introduced, we now describe the co-
generationmechanism. Generally speaking, we calculate two branches:
𝒄 → 𝒛 → 𝒂 and 𝒄 → 𝒛 → 𝒓 , where each generation branch is
guided by the corresponding learned informed prior globally.

In 𝒄 → 𝒛 → 𝒂, given a training dataset of {𝒄, 𝒂} pairs, the
base optimization method is via stochastic variational inference
by maximizing the evidence lowerbound (ELBO) on the data log
likelihood:

𝐿𝑓 𝑢𝑙𝑙 (𝜃 ) = 𝑝𝑞 (𝒛 |𝒂,𝒄) (𝒂 |𝒛) − 𝐷𝐾𝐿 [𝑞(𝒛 |𝒂, 𝒄) | |𝑝𝜃 (𝒛 |𝒄)],
where 𝑝 (𝒂 |𝒛) is realized by the dialog act decoder and 𝑞(𝒛 |𝒂, 𝒄)
is approximated by training a neural encoder network. However,
there is a major limitation here: it suffers from exposure bias at
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latent space, i.e. the decoder only sees 𝒛 sampled from 𝑞(𝒛 |𝒂, 𝒄) and
never experiences 𝒛 sampled from 𝑝𝜃 (𝒛 |𝒄), which is always used at
testing time. Therefore, we use the ‘lite’ version proposed in [52]:

𝐿𝑙𝑖𝑡𝑒 (𝜃 ) = 𝑝𝑞 (𝒛 |𝒄) (𝒂 |𝒛) − 𝛽𝐷𝐾𝐿 [𝑞(𝒛 |𝒄) | |𝑝 (𝒛)],

where 𝛽 is a hyper-parameter between 0 and 1. In this version,
the posterior network becomes the same as our context encoder
𝑝𝜃 (𝒛 |𝒄). To regularize the latent space, we directly use the informed
prior learned from the auto-encoding pre-training for dialog acts
sequence: 𝑞𝜓 (𝒛𝑎 |𝒂). Hence, the final objective for dialog acts se-
quence generation is:

𝐿𝑙𝑖𝑡𝑒_𝐴 (𝜃 ) = 𝑝𝑝𝜃 (𝒛 |𝒄) (𝒂 |𝒛) − 𝛽 · 𝐷𝐾𝐿 [𝑝𝜃 (𝒛 |𝒄) | |𝑞𝜓 (𝒛𝑎 |𝒂)] .

Similarly, in 𝒄 → 𝒛 → 𝒓 , we have the regularized objective for
natural response generation as:

𝐿𝑙𝑖𝑡𝑒_𝑅 (𝜃 ) = 𝑝𝑝𝜃 (𝒛 |𝒄) (𝒓 |𝒛) − 𝛼 · 𝐷𝐾𝐿 [𝑝𝜃 (𝒛 |𝒄) | |𝑞𝜙 (𝒛𝑟 |𝒓)],

where 𝛼 is another hyper-parameter between 0 and 1. Note that
the two informed priors 𝑞𝜓 (𝒛𝑎 |𝒂) and 𝑞𝜙 (𝒛𝑟 |𝒓) are both aligned
with the same 𝑝𝜃 (𝒛 |𝒄). We actually push them to be similar to each
other indirectly. In this way, we manage to encourage bi-directional
semantic associations between them globally.

3.4 Asynchronous Reinforcement Learning
With the aforementioned network structure as described in Figure
2, we can train a relatively good parameter setting using super-
vised learning. Now starting from a well-trained SL checkpoint, we
further fine-tune it via RL to obtain better results.

Specifically, we apply reinforcement learning on the shared la-
tent space 𝒛. The policy gradient is calculated as Equation 2. As
discussed, the policy gradient only works on the encoder part 𝜋𝑒
which corresponds to our context encoder 𝜃 . We thus further apply
REINFORCE to optimize our decoder in an asynchronous manner.
For example, in the 𝒛 → 𝒓 branch, we apply GRU cells to decode
word by word sequentially. Denoting the decoder as G, it is respon-
sible for transforming 𝒛 into the detailed response sequence 𝒓 . By
treating every output token as an action step, the policy gradient is
defined as:

∇𝐽 (G) = EG [
𝑇∑︁
𝑡=0

|𝑟𝑡 |∑︁
𝑗=0

R𝑡 𝑗∇ log G(𝒘𝑡 𝑗 |𝒘<𝑡 𝑗 , 𝒛𝑡 , 𝒄𝑡 )], (3)

where |𝑟𝑡 | is the number of tokens in the response at turn 𝑡 and 𝑗 is
the token index in the response. R𝑡 𝑗 denotes the discounted return
of the 𝑗-th token at turn 𝑡 . Note that here the Equation further
incorporates BLEU score as part of the reward. This is different
from the Equation 2 using only task completion rewards.

The goal of the whole reinforcement learning process is to find
the best maximizers that can maximize the reward value regarding
both encoder part and the decoder part. The two policies are defined
in Equation (2) and (3), respectively. If we synchronously update
these two policies, the composite state will be inconsistent before
and after the update each time. Consequently, the value does not
always monotonically improve during the learning process. It will
affect the convergence of both policies. Therefore, we update the
two asynchronously during learning. Experiments show that this
leads to the convergence of these policies to a local maximizer.

4 EXPERIMENTS
4.1 Datasets
We conduct experiments on the most widely used conversational
search benchmark datasets MultiWoz 2.0 [2] and MultiWoz 2.1 [12]
to evaluate our proposed co-generation model. It contains over ten
thousand dialogues that spans over seven distinct domains. All the
conversations are collected by human-to-human conversations via
the crowdsourcing WOZ setting. In which, every conversation is
generated where the user is given a pre-defined goal and the system
attempts to fulfill the goal by interacting with the user. We follow
the same delexicalized method provided by [2] to preprocess the
dataset, which is widely applied in other works [38, 52]. MultiWoz
2.1 is a modified version of MultiWoz 2.0 which mainly fixes the
noisy state annotations and corrects a small fraction of conversation
utterances. We follow the public divisions to split the datasets into
training, validation and testing sets [2, 12].

4.2 Training Details
Here we list the specific hyper parameters for Co-Gen model. We
set both the maximum length for the user’s utterance in context
and the maximum length for the system’s utterance in response
to 50. The embedding size for each word is set to 100. For the
input conversation history, target dialog acts sequence and natural
response, all these encoders are one-layer bidirectional RNN that
uses GRU cells of size 300. The encoded result is projected to the
latent content space, where the size of the shared latent variable 𝒛
is 200. For decoders, they are also one-layer RNN with a separate
embedding layer and GRU cells.

During SL training, we set batch size as 32 and the maximum
number of training epochs as 50. Adam optimizer is used with
an initial learning rate of 0.001 and weight decay 1e-05. The KL
divergence hyper-parameters𝛼 and 𝛽 are all set to be 1.0 empirically
in our experiments. After supervised training of the model, we
further fine-tune the model with asynchronous RL. In which, each
conversation is evaluated with the goal (e.g. calculating the Success
rate) and the BLEU scores. We fix each batch as a complete dialogue.
Stochastic gradient descent (SGD) is used, and the learning rate in
the asynchronous optimization process for the two policies is both
0.09 with weight decay 1e-05. Generally speaking, the experiments
of Co-Gen were run on a Nvidia GeForce RTX 2080Ti graphic card,
which consumed around 2.5 hours for SL training and less than 1
hours for RL finetuning. Hence, it is not very expensive to reproduce
our results as shown in Table 1.

4.3 Test Settings
Experiments are conducted on the context-to-response generation
task similar to the one originally proposed in [2]. Given the con-
versation context, the model is trained to generate appropriate
responses in each turn. In our proposed model, both the structured
dialogue acts and the natural language response will be generated
and evaluated. What’s more, as the proposed model constructs a
shared latent space and leverages the auto-encoding scheme to
further regularize the space, we will also demonstrate whether the
learned semantic space is meaningful or not.



SIGIR ’22, July 11–15, 2022, Madrid, Spain Chenchen Ye, Lizi Liao, Fuli Feng, Wei Ji, and Tat-Seng Chua

4.4 Evaluation Metric
Following existing works, we adapt three automatic metrics mea-
sured in percentage to evaluate the generated natural responses
from a conversational search system such as Inform rate, Success
rate and BLEU score. Inform rate measures whether the system has
provided the correct entity (e.g., the name of restaurant). Success
rate shows the ratio of correct answers provided for request slots
in the generated utterances. The fluency of the generated response
is measured by BLEU [29] score. The combined Score is computed
as (𝐵𝐿𝐸𝑈 + 0.5 × (𝐼𝑛𝑓 𝑜𝑟𝑚 + 𝑆𝑢𝑐𝑐𝑒𝑠𝑠)) [2] to fairly evaluate the
performance of a dialogue system as a popular total score. To eval-
uate the generated structured dialog acts, we adopt Entity F1 [41]
to evaluate the entity coverage accuracy (including all slot values,
days, numbers, and reference, etc). We also adopt the Act F1 from
[3, 39] to judge the act coverage accuracy such as domain, action
and slots.

Furthermore, we carry out human evaluation to measure the
quality of generated responses. We add three criteria as follows:
Fluency measures whether the generated response is fluent, gram-
matically correct and smooth; Coherence reflects how coherent the
response is and whether it follows the conversation flow; Informa-
tiveness shows whether the response provides relevant and useful
information to the user. We provide detailed descriptions to the
human evaluators during evaluation.

4.5 Baseline Models
We denote the variation of the proposed Co-Gen as Co-Gen_𝑆𝐿 ,
which corresponds to the proposed model without RL finetuning.
They are compared with the following models: SFN [27], UBAR
[44], HDSA [40], DialoGPT [48], LaRL [52], LAVA [26] , HDNO
[38] and MarCo [39]. These baselines can be organized into three
groups, i.e., pipe-lined, end-to-end and co-generation methods. All
these models leverage oracle dialogue states. More details about
these methods are given below:

– SFN [27]: It learns neural dialogue modules corresponding to
the structured components of traditional dialogue systems.
It obtains strong results both with (denoted as SFN) and
without reinforcement learning (SFN_𝑆𝐿).

– UBAR [44]: It is based on fine-tuning the pretrained GPT-2
where a whole dialogue session is treated as a single training
sequence. The sequence is composed of user utterance, belief
state, database result, system act, and system response of
every dialog turn.

– HDSA [3]: It is a two-stage model that uses BERT to predict
a one hot dialog act vector for guiding the following response
generation task. The structure of dialog acts is modeled as a
multi-layer hierarchical graph.

– DialoGPT[48]: It is also based on fine-tuning the pretrained
GPT-2 but it only focuses on the context-to-response map-
ping where all middle labels are ignored.

– LaRL [52]: This model is the first to represent dialogue act
as latent vectors in task-oriented dialogues. During the RL
training, it only updates the corresponding policy part while
the decoding part is not involved in RL training.

– LAVA [26]: Built upon LaRL, it further leverages three aux-
iliary tasks to shape the latent variable distribution, making

the latent representations truly encodes the characteristics
of different actions.

– HDNO [38]: It adopts the option framework [35] to model
the hierarchical relation between dialogue policy and NLG.
No middle results are required. We also report its SL only
version as HNDO_𝑆𝐿 .

– MarCo [39]: It co-generates dialog acts and natural responses
as two sequence generation tasks while uses dynamic atten-
tion to capture local semantic associations.

4.6 Automatic Evaluation Results
4.6.1 Results on Natural Language Responses. The main results
for natural response generation are shown in Table 1. The pro-
posed Co-Gen method achieves the best performance regarding
the overall performance reflected by the combined Scores. It sig-
nificantly outperforms all the comparing methods. For example,
Co-Gen improves the best performing baseline HDNO by 2.17% in
the MultiWoz 2.0 dataset and 1.31% in the MultiWoz 2.1 dataset.
Also, Co-Gen shows balanced results over both the strategy learn-
ing for task completion and surface style realization. The former is
evaluated by Inform rate and Success rate, while the latter is evalu-
ated by the BLEU score. Specifically, we observe a general trend that
RL applied methods can largely boost the strategy part as expected,
because the task completion rates are directly considered as re-
wards. For example, in pipeline-based methods, the RL applied SFN
outperforms its SL counterparts, especially in task completion met-
rics like Inform rate and Success rate. This is also true in end-to-end
RL based methods such as HDNO. Hence, in the proposed Co-Gen
model, RL rewards are also incorporated, which enables the model
to fore-see more turns in a trial-and-error manner. This also makes
it possible for the model to generate more intelligent responses.
Moreover, we observe that for RL-applied methods, overempha-
sizing task completion may often lead to corrupted responses. For
example, on MultiWoz2.0, though LAVA achieves a leading high
score in Inform and Success rate, it only obtains a low BLEU score
of 12.02. In comparison, Co-Gen obtains more balanced results with
reasonably high Inform and Success rate and more natural responses
reflected by its 20.42 BLEU score. For methods that do not apply RL
such as MarCo and HDSA, their performance results are relatively
lower, especially regarding the task completion metrics.

Moreover, for language modeling based methods, the results
show that how to model the task is the key to achieve good per-
formance via the powerful large-scale pretraining models such as
GPT-2. For example, the DialoGPTmodel does not performwell and
there are large performance gaps between DialoGPT and UBAR. Be-
cause the modeling of the later is more for task-oriented dialogues
and various intermediate labels are involved. Although UBAR man-
ages to achieve high combined Scores, the lack of foreseeing the
future is still a main shortcoming for such models.

4.6.2 Results on Structured Responses. Co-Gen also manages to
generate structured dialogue acts sequences, where each action is or-
ganized as a (domain, action, slot) tuple. We separately check Act F1
score for dialog acts and the Entity F1 for the slot values. The results
on MultiWoz 2.0 are listed in Table 2, where BiLSTM, Word-CNN
and Transformer are baselines from [3]. There are mainly three
groups of methods. The first group ‘Act Prediction Only’ means
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Table 1: Overall natural language response results on MultiWoz 2.0 and MultiWoz 2.1.

Group Method MultiWoz 2.0 MultiWoz 2.1

Inform Success BLEU Score Inform Success BLEU Score

Pipe-lined

SFN_𝑆𝐿 90.00 74.20 18.35 100.45 63.10 53.10 17.56 75.66
SFN 94.40 83.10 16.34 105.09 87.80 76.20 10.57 92.57
UBAR 94.00 83.60 17.22 106.02 89.6 78.6 17.34 101.44
HDSA 82.90 68.90 23.60 99.50 86.30 70.60 22.36 100.81

End-to-End

DialoGPT 73.40 48.00 12.16 72.86 72.10 50.10 12.62 73.72
LaRL 93.49 84.98 12.01 101.25 92.39 85.29 13.72 102.56
LAVA 97.50 94.80 12.02 108.17 96.39 83.57 14.02 104.00

HDNO_𝑆𝐿 78.60 70.40 19.26 93.76 78.80 66.70 18.46 91.21
HDNO 95.80 84.50 18.61 108.76 93.20 81.90 18.35 105.90

Co-Generate
MarCo 92.30 78.60 20.02 105.47 92.50 77.80 19.54 104.69

Co-Gen_𝑆𝐿 92.10 77.40 20.91 105.66 88.90 80.00 20.67 105.12
Co-Gen (ours) 94.70 86.70 20.42 111.12 91.20 85.20 19.09 107.29

these methods are specifically trained to do dialog act prediction as
classification task while cannot generate natural responses. The sec-
ond ‘Pipe-lined’ group are all pipe-lined methods which generates
both, but in sequential way. While ‘Co-generate’ means methods
generate both concurrently. Since the end-to-end RL based methods
do not have such outputs, we skip the comparison.

As shown in Table 2, methods in the ‘Act Prediction Only’ group
obtain relatively low performances while the Transformer based
one performs a bit better among them. As they only work on (do-
main, action, slot) tuples, they do not have Entity F1 results. For
pipe-line methods, UBAR performs the best. This might be due to
that it gains learning capability from the powerful GPT-2 model.
However, its Entity F1 score is largely inflated, as it does not dif-
ferentiate the values of different domains. For example, hotel_area,
restaurant_area, attraction_area are same for UBAR but different for
other models. Hence, the high score 82.3 is not comparable. Besides
these, the proposed model Co-Gen works the best across Act F1 and
Entity F1. These demonstrate that the proposed Co-Gen method
not only generates good natural responses, but also generates the
structured dialog acts well.

Table 2: Structured response generation results on MultiWoz
2.0. Note that the end-to-end group methods fail to generate
such responses, hence no results are shown here.

Group Method Act F1 Entity F1

Act Prediction Only
BiLSTM 71.4 NA

Word-CNN 71.5 NA
Transformer 73.1 NA

Pipe-lined
SFN 63.7 77.1
UBAR 84.6 82.33
HDSA 77.3 65.7

Co-Generate MarCo 73.9 59.9
Co-Gen 87.6 77.2

4.6.3 Semantic Meanings of the Shared Latent Space. As shown in
Figure 3, we visually assess the latent content space by first cluster-
ing the latent content vector of each system response in the testing

3The evaluation script of UBAR does not differentiate entity domains hence largely
inflates the result. This number is thus not comparable to others.

set into six clusters, and then projecting them with t-SNE [37] to
analyze the formed clusters. Through inspecting the randomly se-
lected system utterances as shown in the right hand side, we find
that the clusters of latent content vectors of both Co-Gen andHDNO
possess some semantic meanings. For example, the cluster in blue
dots in Co-Gen is related to train booking and the cluster in yellow
dots is related to restaurant recommendation, while the cluster in
brown dots in HDNO is related to the general phrases for goodbye
at the end of service. However, it is also obvious that the clusters
from Co-Gen as shown in Figure 3 (a) are relatively better separated,
which demonstrates clearer semantic meanings expressed by these
latent vectors. This might be due to the successful shaping effect
of the pre-trained informed priors from auto-encoding tasks for
dialog acts sequence and natural response.

4.7 Human Evaluation
We conduct a human evaluation by recruiting eight undergraduate
students as participants to perform two pairs of comparison from
the human perspective between the responses generated by Co-Gen
vs. HDNO and Co-Gen vs. MarCo. For each pair of response com-
parison, We randomly sample 150 samples from the testing dataset.
During the evaluation, each conversation sample is presented to
the participants with the user utterance, ground-truth response as
the reference, and two generated responses from Co-Gen and the
counterpart model separately. The participants are unaware of the
source model for the generated responses to ensure a fair compari-
son. The ranking is based on three criteria: (i) fluency: the response
is grammatically correct, natural, and smooth. (ii) coherence: the re-
sponse is coherent and follows the flow of the dialogue reasonably.
(iii) informativeness: the response provided related information to
solve the user’s requests and complete the task.

After gathering the replies, the calculated statistics are shown
in Figure 4, where the “Win”, “Tie”, and “Lose” parts in the stacked
bars represents the proportions of Co-Gen outperforms, ties with,
and loses to its counterparts under each criterion. From the results,
we can observe that the generated responses by Co-Gen outper-
forms HDNO in all three aspects, indicating its strong capability in
correctly inferring system action to fulfill user requests and generat-
ing human-like responses. In the second comparison, we note that



SIGIR ’22, July 11–15, 2022, Madrid, Spain Chenchen Ye, Lizi Liao, Fuli Feng, Wei Ji, and Tat-Seng Chua

(a) Co-Gen (ours)

(b) HDNO

Figure 3: The shared latent content vectors of Co-Gen and HDNO clustered in six categories visualized via the T-SNE algorithm.
We randomly show three turns of system utterances for each cluster (best view in color).
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Figure 4: Results of human evaluation in response quality.
Two pairs of comparison have been conducted, where the
first figure presents the results of Co-Gen vs. HDNO, and the
second figure corresponds to Co-Gen vs. MarCo.

Co-Gen obtains higher winning percentages than MarCo in both
fluency and coherence while under-performing on informativeness.
We further analyzed the bad cases of our model on informative-
ness in this pair comparison, and find that both model can provide
enough information to solve user requests, while MarCo some-
times emphasizes some repeated information that has appeared
in previous turns’ responses. Such generation preferrence helps it
to be more informative, but also results in token-level repetition
and conversation level incoherence. In all, our model Co-Gen can
deduce more accurate system actions that truly figure out the user
request and provide an appropriate response accordingly.

4.8 Example Responses Generated
To get a better sense of how these methods perform, we showcase
some system utterances generated in the same dialogue by different
baselines and our proposed Co-Gen. Since most of the dialogues in
MultiWoz 2.0 and MultiWoz 2.1 are similar, we only show some re-
sults on MultiWoz 2.0. As listed in Table 3, the generated utterances
of Co-Gen is apparently more fluent and task completion oriented.
For example, it manages to keep the whole dialogue on the topic of
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Table 3: Some delexicalized responses generated by the base-
lines and Co-Gen on MultiWoz 2.0.

Method Delexicalized Dialogue

User: i am looking to go somewhere in the [value_area] to enjoy some en-
tertainment. can you help?

GT Sys: i cannot find any entertainment venue -s in the [value_area]. would
you like to try something different ? a museum perhaps?

Co-Gen: there are no colleges in the [value_area]. would you like to try a different area
or attraction type?

MarCo: [attraction_name] is a nightclub in the [value_area]. it s free to get in.
HDNO: i am sorry, there are no swimming pools in the [value_area]. would you like

me to look in a different area?
LAVA: i am sorry, there are no multiple sports attractions in the [value_area]. would

you like to try another area?
UBAR: i am sorry, there are no [value_type] in the [value_area]. would you like to

try a different area?
User: no museums, what colleges are there around town?
GT Sys: sure, there are [value_count] colleges in that area.
Co-Gen: there are [value_count] colleges in the [value_area]. i recommend the [attrac-

tion_name]. it s free to get in.
MarCo: there are [value_count] colleges in the [value_area]. [attraction_name] is

located at [attraction_address] and has free admission.
HDNO: [attraction_name] is a great place. would you like me to book a ticket for you?
LAVA: there are [value_count] colleges in the [value_area]. i recommend [attrac-

tion_name]. would you like more information?
UBAR: there are [value_choice] [value_type] in the [value_area]. [value_name] on

[value_address] is [value_price] and [value_name] on [value_address] is
[value_price].

User: can i please get the phone number, postcode and entrance fee?
GT Sys: [attraction_name] is [value_count] i would recommend, their phone

number is [attraction_phone], post code is [attraction_postcode], and
there is no entrance fee. can i help you with anything else?

Co-Gen: [attraction_name] is a great college in the [value_area]. the phone number is
[attraction_phone] and the postcode is [attraction_postcode].

MarCo: [attraction_name] is located at [attraction_address], postcode [attrac-
tion_postcode], and their phone number is [attraction_phone]. the entrance
fee is [value_count] pounds.

HDNO: the phone number is [attraction_phone]. the postcode is [attraction_postcode].
is there anything else i can help you with?

LAVA: the [attraction_name] is located at [attraction_address], postcode [attrac-
tion_postcode]. the phone number is [attraction_phone].

UBAR: the phone number is [value_phone]. the postcode is [value_postcode] and the
entrance fee is [value_price].

User: i also need a train that leaves on [value_day] and arrives by
[value_time].

GT Sys: where are you traveling from? there are [value_count] trains from
[value_place] that arrive by that time.

Co-Gen: there are several trains that meet your criteria. where are you departing from
and what is your destination?

MarCo: there are [value_count] trains leaving from [value_place] to [value_place].
where would you like to depart from and arrive ?

HDNO: where will you be departing from?
LAVA: i have [value_count] trains that meet your criteria. would you like to narrow

it down by departure site or arrival time?
UBAR: where will you be departing from?
User: i am leaving [value_place] and going to [value_place].
GT Sys: the first train leaves at [value_time].
Co-Gen: i have train [train_id] that leaves at [value_time] and arrives at [value_time].

would you like me to book it?
MarCo: [train_id] leaves at [value_time]. would you like me to book that for you ?
HDNO: [train_id] leaves at [value_time]. would you like me to book a ticket for you?
LAVA: i have train [train_id] that leaves at [value_time] and arrives at [value_time].

would you like me to book that for you?
UBAR: [value_id] leaves at [value_leave] and arrives at [value_arrive]. would you

like me to book that for you?
User: can you book [value_count] tickets?
GT Sys: your reservation has been made. the total fee is [value_price] gbp

payable at the station. reference number is [train_reference].
Co-Gen: booking was successful, the total fee is [value_price] gbp payable at the station.

reference number is [train_reference]. can i help with anything else?
MarCo: i have booked you [value_count] seats on the [train_id]. the total fee

is [value_price] gbp payable at the station. your reference number is
[train_reference].

HDNO: booking was successful, the total fee is [value_price] gbp payable at the station.
reference number is [train_reference]. is there anything else i can help you
with?

LAVA: booking was successful, the total fee is [value_price] gbp payable at the station.
reference number is [train_reference].

UBAR: booking was successful, the total fee is [value_price] payable at the station.
reference number is: [value_reference]. can i help you with anything else
today?

college recommendation and successfully book train tickets for the
user during the conversation.

In more details, for those methods fine-tuned with RL, Co-Gen
is able to foresee the future better for response generation than
other baselines such as HDNO and LAVA. This is evidenced by
the response on ‘no colleges’ in the first turn, while other models
such as HDNO and LAVA mention ‘swimming pools’ and ‘multiple
sports attractions’ instead. This is also evidenced in the second turn
that Co-Gen manages to generate ‘free to get in’ which corresponds
to ‘entrance fee’ asked in the subsequent turn. Moreover, in compar-
ison with other baselines trained with RL, the generated utterances
of Co-Gen is more stringent in generating slots. Especially, LAVA
tends to generate as many slots as possible to increase the success
rate. e.g. generating the extra [attraction_address] in the third turn.
This is the common issue of most RL methods on task-oriented
dialogue system. However, in Co-Gen the situation is better. This
might be due to our asynchronous RL optimization scheme where
task completion goals and surface generation goals are separately
optimized in an iterative fashion. The improved BLEU score in
Table 1 for Co-Gen also demonstrates this.

For methods without RL fine-tuning, it is interesting that we
also observe the phenomenon of over-generating slot placeholders
in UBAR generated responses, such as the one in the second turn. It
generates [value_choice], [value_type], [value_area], [value_name],
[value_address] and [value_price] in a single turn, which is rather dif-
ferent from the ground truth response where only one [value_count]
is contained. Since UBAR purely relies on the powerful language
modeling GPT-2 model and does not leverage RL, this might be
due to the context seen in former turns. Such phenomenon is also
observed in the co-generation baseline MarCo, which also tends to
give redundant information.

5 CONCLUSION
In conclusion, we proposed a neural co-generation framework for
generating structured dialog acts and natural language responses
concurrently for conversational search systems. It roots from a
shared latent space that is shaped by two informed prior distri-
butions. Accordingly, we formed two auto-encoding branches for
structured dialog acts and natural responses as two auxiliary tasks
to capture the generative factors of them. The joint training in an
interconnected network structure makes the learned latent vari-
ables possess well-separated semantic meanings. Furthermore, we
designed an asynchronous reinforcement learning mechanism to
fine-tune the network with long-term rewards, which enables the
model to foresee the future for better search completion and success
rates. We carried out extensive experiments on two public datasets
in comparison with a wide range of baselines. Both automatic and
human evaluation are involved. The superior performance demon-
strates that the proposed Co-Gen model generates better responses
in both forms.

In the future, we look forward to applying our method for per-
sonalized response generation in conversational search when more
such data is available. We would also like to further improve the
strategy planning part in handling conversational search situations
unseen during training and analyze how our model performs in
real conversation interaction with more unseen situations.
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